Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NAR Genom Bioinform ; 6(2): lqae038, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38666212

RESUMEN

The growing interest in studying the relationship between the human microbiome and our health has also extended to time-to-event studies where researchers explore the connection between the microbiome and the occurrence of a specific event of interest. The analysis of microbiome obtained through high throughput sequencing techniques requires the use of specialized Compositional Data Analysis (CoDA) methods designed to accommodate its compositional nature. There is a limited availability of statistical tools for microbiome analysis that incorporate CoDA, and this is even more pronounced in the context of survival analysis. To fill this methodological gap, we present coda4microbiome for survival studies, a new methodology for the identification of microbial signatures in time-to-event studies. The algorithm implements an elastic-net penalized Cox regression model adapted to compositional covariates. We illustrate coda4microbiome algorithm for survival studies with a case study about the time to develop type 1 diabetes for non-obese diabetic mice. Our algorithm identified a bacterial signature composed of 21 genera associated with diabetes development. coda4microbiome for survival studies is integrated in the R package coda4microbiome as an extension of the existing functions for cross-sectional and longitudinal studies.

2.
Front Microbiol ; 14: 1250806, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075858

RESUMEN

The human microbiome has become an area of intense research due to its potential impact on human health. However, the analysis and interpretation of this data have proven to be challenging due to its complexity and high dimensionality. Machine learning (ML) algorithms can process vast amounts of data to uncover informative patterns and relationships within the data, even with limited prior knowledge. Therefore, there has been a rapid growth in the development of software specifically designed for the analysis and interpretation of microbiome data using ML techniques. These software incorporate a wide range of ML algorithms for clustering, classification, regression, or feature selection, to identify microbial patterns and relationships within the data and generate predictive models. This rapid development with a constant need for new developments and integration of new features require efforts into compile, catalog and classify these tools to create infrastructures and services with easy, transparent, and trustable standards. Here we review the state-of-the-art for ML tools applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on ML based software and framework resources currently available for the analysis of microbiome data in humans. The aim is to support microbiologists and biomedical scientists to go deeper into specialized resources that integrate ML techniques and facilitate future benchmarking to create standards for the analysis of microbiome data. The software resources are organized based on the type of analysis they were developed for and the ML techniques they implement. A description of each software with examples of usage is provided including comments about pitfalls and lacks in the usage of software based on ML methods in relation to microbiome data that need to be considered by developers and users. This review represents an extensive compilation to date, offering valuable insights and guidance for researchers interested in leveraging ML approaches for microbiome analysis.

3.
BMC Bioinformatics ; 24(1): 82, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879227

RESUMEN

BACKGROUND: One of the main challenges of microbiome analysis is its compositional nature that if ignored can lead to spurious results. Addressing the compositional structure of microbiome data is particularly critical in longitudinal studies where abundances measured at different times can correspond to different sub-compositions. RESULTS: We developed coda4microbiome, a new R package for analyzing microbiome data within the Compositional Data Analysis (CoDA) framework in both, cross-sectional and longitudinal studies. The aim of coda4microbiome is prediction, more specifically, the method is designed to identify a model (microbial signature) containing the minimum number of features with the maximum predictive power. The algorithm relies on the analysis of log-ratios between pairs of components and variable selection is addressed through penalized regression on the "all-pairs log-ratio model", the model containing all possible pairwise log-ratios. For longitudinal data, the algorithm infers dynamic microbial signatures by performing penalized regression over the summary of the log-ratio trajectories (the area under these trajectories). In both, cross-sectional and longitudinal studies, the inferred microbial signature is expressed as the (weighted) balance between two groups of taxa, those that contribute positively to the microbial signature and those that contribute negatively. The package provides several graphical representations that facilitate the interpretation of the analysis and the identified microbial signatures. We illustrate the new method with data from a Crohn's disease study (cross-sectional data) and on the developing microbiome of infants (longitudinal data). CONCLUSIONS: coda4microbiome is a new algorithm for identification of microbial signatures in both, cross-sectional and longitudinal studies. The algorithm is implemented as an R package that is available at CRAN ( https://cran.r-project.org/web/packages/coda4microbiome/ ) and is accompanied with a vignette with a detailed description of the functions. The website of the project contains several tutorials: https://malucalle.github.io/coda4microbiome/.


Asunto(s)
Algoritmos , Microbiota , Lactante , Humanos , Estudios Transversales , Análisis de Datos , Estudios Longitudinales
4.
Nutrients ; 13(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34210038

RESUMEN

The intestinal microbiome may trigger celiac disease (CD) in individuals with a genetic disposition when exposed to dietary gluten. Research demonstrates that nutrition during infancy is crucial to the intestinal microbiome engraftment. Very few studies to date have focused on the breast milk composition of subjects with a history of CD on a gluten-free diet. Here, we utilize a multi-omics approach with shotgun metagenomics to analyze the breast milk microbiome integrated with metabolome profiling of 36 subjects, 20 with CD on a gluten-free diet and 16 healthy controls. These analyses identified significant differences in bacterial and viral species/strains and functional pathways but no difference in metabolite abundance. Specifically, three bacterial strains with increased abundance were identified in subjects with CD on a gluten-free diet of which one (Rothia mucilaginosa) has been previously linked to autoimmune conditions. We also identified five pathways with increased abundance in subjects with CD on a gluten-free diet. We additionally found four bacterial and two viral species/strains with increased abundance in healthy controls. Overall, the differences observed in bacterial and viral species/strains and in functional pathways observed in our analysis may influence microbiome engraftment in neonates, which may impact their future clinical outcomes.


Asunto(s)
Enfermedad Celíaca/microbiología , Dieta Sin Gluten , Metaboloma , Microbiota , Leche Humana/microbiología , Adulto , Estudios de Casos y Controles , Enfermedad Celíaca/dietoterapia , Estudios Transversales , Femenino , Glútenes/metabolismo , Humanos , Recién Nacido , Metabolómica , Metagenómica , Estudios Prospectivos
5.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34253606

RESUMEN

Other than exposure to gluten and genetic compatibility, the gut microbiome has been suggested to be involved in celiac disease (CD) pathogenesis by mediating interactions between gluten/environmental factors and the host immune system. However, to establish disease progression markers, it is essential to assess alterations in the gut microbiota before disease onset. Here, a prospective metagenomic analysis of the gut microbiota of infants at risk of CD was done to track shifts in the microbiota before CD development. We performed cross-sectional and longitudinal analyses of gut microbiota, functional pathways, and metabolites, starting from 18 mo before CD onset, in 10 infants who developed CD and 10 matched nonaffected infants. Cross-sectional analysis at CD onset identified altered abundance of six microbial strains and several metabolites between cases and controls but no change in microbial species or pathway abundance. Conversely, results of longitudinal analysis revealed several microbial species/strains/pathways/metabolites occurring in increased abundance and detected before CD onset. These had previously been linked to autoimmune and inflammatory conditions (e.g., Dialister invisus, Parabacteroides sp., Lachnospiraceae, tryptophan metabolism, and metabolites serine and threonine). Others occurred in decreased abundance before CD onset and are known to have anti-inflammatory effects (e.g., Streptococcus thermophilus, Faecalibacterium prausnitzii, and Clostridium clostridioforme). Additionally, we uncovered previously unreported microbes/pathways/metabolites (e.g., Porphyromonas sp., high mannose-type N-glycan biosynthesis, and serine) that point to CD-specific biomarkers. Our study establishes a road map for prospective longitudinal study designs to better understand the role of gut microbiota in disease pathogenesis and therapeutic targets to reestablish tolerance and/or prevent autoimmunity.


Asunto(s)
Enfermedad Celíaca/microbiología , Microbioma Gastrointestinal , Autoinmunidad , Biomarcadores/metabolismo , Enfermedad Celíaca/metabolismo , Preescolar , Estudios Transversales , Femenino , Microbioma Gastrointestinal/genética , Interacciones Microbiota-Huesped , Humanos , Lactante , Inflamación , Estudios Longitudinales , Masculino , Redes y Vías Metabólicas , Metaboloma , Metagenómica , Estudios Prospectivos
6.
Microbiome ; 9(1): 39, 2021 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-33549144

RESUMEN

BACKGROUND: The gut microbiota plays a central role in host physiology and in several pathological mechanisms in humans. Antibiotics compromise the composition and functions of the gut microbiota inducing long-lasting detrimental effects on the host. Recent studies suggest that the efficacy of different clinical therapies depends on the action of the gut microbiota. Here, we investigated how different antibiotic treatments affect the ability of the gut microbiota to control intestinal inflammation upon fecal microbiota transplantation in an experimental colitis model and in ex vivo experiments with human intestinal biopsies. RESULTS: Murine fecal donors were pre-treated with different antibiotics, i.e., vancomycin, streptomycin, and metronidazole before FMT administration to colitic animals. The analysis of the gut microbiome, fecal metabolome, and the immunophenotyping of colonic lamina propria immune cells revealed that antibiotic pre-treatment significantly influences the capability of the microbiota to control intestinal inflammation. Streptomycin and vancomycin-treated microbiota failed to control intestinal inflammation and were characterized by the blooming of pathobionts previously associated with IBD as well as with metabolites related to the presence of oxidative stress and metabolism of simple sugars. On the contrary, the metronidazole-treated microbiota retained its ability to control inflammation co-occurring with the enrichment of Lactobacillus and of innate immune responses involving iNKT cells. Furthermore, ex vivo cultures of human intestinal lamina propria mononuclear cells and iNKT cell clones from IBD patients with vancomycin pre-treated sterile fecal water showed a Th1/Th17 skewing in CD4+ T-cell populations; metronidazole, on the other hand, induced the polarization of iNKT cells toward the production of IL10. CONCLUSIONS: Diverse antibiotic regimens affect the ability of the gut microbiota to control intestinal inflammation in experimental colitis by altering the microbial community structure and microbiota-derived metabolites. Video Abstract.


Asunto(s)
Antibacterianos/efectos adversos , Colitis/inducido químicamente , Colitis/microbiología , Modelos Animales de Enfermedad , Disbiosis/microbiología , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Antibacterianos/farmacología , Colitis/inmunología , Colitis/patología , Disbiosis/inducido químicamente , Femenino , Microbioma Gastrointestinal/inmunología , Humanos , Masculino , Metronidazol/farmacología , Ratones , Células T Asesinas Naturales/efectos de los fármacos , Células T Asesinas Naturales/inmunología , Estreptomicina/efectos adversos , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Vancomicina/efectos adversos
7.
Microbiome ; 8(1): 130, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917289

RESUMEN

BACKGROUND: Celiac disease (CD) is an autoimmune digestive disorder that occurs in genetically susceptible individuals in response to ingesting gluten, a protein found in wheat, rye, and barley. Research shows that genetic predisposition and exposure to gluten are necessary but not sufficient to trigger the development of CD. This suggests that exposure to other environmental stimuli early in life, e.g., cesarean section delivery and exposure to antibiotics or formula feeding, may also play a key role in CD pathogenesis through yet unknown mechanisms. Here, we use multi-omics analysis to investigate how genetic and early environmental risk factors alter the development of the gut microbiota in infants at risk of CD. RESULTS: Toward this end, we selected 31 infants from a large-scale prospective birth cohort study of infants with a first-degree relative with CD. We then performed rigorous multivariate association, cross-sectional, and longitudinal analyses using metagenomic and metabolomic data collected at birth, 3 months and 6 months of age to explore the impact of genetic predisposition and environmental risk factors on the gut microbiota composition, function, and metabolome prior to the introduction of trigger (gluten). These analyses revealed several microbial species, functional pathways, and metabolites that are associated with each genetic and environmental risk factor or that are differentially abundant between environmentally exposed and non-exposed infants or between time points. Among our significant findings, we found that cesarean section delivery is associated with a decreased abundance of Bacteroides vulgatus and Bacteroides dorei and of folate biosynthesis pathway and with an increased abundance of hydroxyphenylacetic acid, alterations that are implicated in immune system dysfunction and inflammatory conditions. Additionally, longitudinal analysis revealed that, in infants not exposed to any environmental risk factor, the abundances of Bacteroides uniformis and of metabolite 3-3-hydroxyphenylproprionic acid increase over time, while those for lipoic acid and methane metabolism pathways decrease, patterns that are linked to beneficial immunomodulatory and anti-inflammatory effects. CONCLUSIONS: Overall, our study provides unprecedented insights into major taxonomic and functional shifts in the developing gut microbiota of infants at risk of CD linking genetic and environmental risk factors to detrimental immunomodulatory and inflammatory effects. Video Abstract.


Asunto(s)
Enfermedad Celíaca/genética , Enfermedad Celíaca/microbiología , Ambiente , Microbioma Gastrointestinal , Metabolómica , Metagenómica , Bacteroides/genética , Bacteroides/aislamiento & purificación , Cesárea , Estudios Transversales , Femenino , Microbioma Gastrointestinal/genética , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Metano/metabolismo , Embarazo , Estudios Prospectivos , Factores de Riesgo , Ácido Tióctico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...